(9x)^2+(16x)^2=55

Simple and best practice solution for (9x)^2+(16x)^2=55 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x)^2+(16x)^2=55 equation:



(9x)^2+(16x)^2=55
We move all terms to the left:
(9x)^2+(16x)^2-(55)=0
We add all the numbers together, and all the variables
25x^2-55=0
a = 25; b = 0; c = -55;
Δ = b2-4ac
Δ = 02-4·25·(-55)
Δ = 5500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5500}=\sqrt{100*55}=\sqrt{100}*\sqrt{55}=10\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{55}}{2*25}=\frac{0-10\sqrt{55}}{50} =-\frac{10\sqrt{55}}{50} =-\frac{\sqrt{55}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{55}}{2*25}=\frac{0+10\sqrt{55}}{50} =\frac{10\sqrt{55}}{50} =\frac{\sqrt{55}}{5} $

See similar equations:

| 3/5x+4=32 | | (2+3x)29=360 | | 62(2+3x)=360 | | (9x)^2+(16x)^2=55^2 | | 12x-13=5(2x-2)+2x-3 | | 7a^2=10a+8 | | X+3x+(3x+10)=430 | | 2(6-y)/5=-y | | X^2-18x-45=-5 | | 6-3(2a-4)=-18 | | 5/7=x/8 | | A^2+20a-93=2 | | -7(2x-9)+7=-14x+70 | | 250-h=113 | | A^2+12a-90=8 | | 3x=16+25 | | 5(4^x)=45 | | 10-t=4 | | 11n+56=100 | | -8x-14=(-2-4x)+4x | | y=-0.2+6.1 | | 33=31-b | | 25s=35 | | 40+12x-16x2=0 | | 5.4+14.6-10.1t=12.8-3.5t | | -30+x=18 | | (3x+9)+(2x+4)=180 | | 0.18(y-1)+0.02y=0.14y-1.5 | | 5u-17=7(u-5) | | 3x+(8x15)=180 | | 10x+3+26x-3=180 | | -4(a+6)=-40 |

Equations solver categories